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It is shown that the appropriate mathematical formalism of the field theoretical 
model recently proposed by T. D. Lee must use an indefinite metric to describe 
the norm of the state vector in the Hilbert space. The appearance of the indefinite 
metric is intimately connected with a new state of the V-particle having an energy 
that is below the mass of the “normal” V-particle. It is further shown that the 
S-matrix for this model is not unitary and that the probability for an incoming 
V-particle in the normal state and a boson, to make a transition to an outgoing 
V-particle in the new state and another boson, must be negative if the sum of 
all transition probabilities for the incoming state mentioned shall add up to one.

Introduction.

In a recent paper1), T. D. Lee has suggested a very interesting 
model of a renormalizable field theory. This model is simple 

enough to allow a more or less explicit solution, but compli
cated enough to contain many features characteristic of more 
realistic theories. It uses not only a renormalization of the mass 
of one kind of particles involved, but also a renormalization 
of the coupling constant g describing the interaction between the 
particles. In the explicit solution found by Lee, the ratio between 
the square of the renormalized coupling constant g and the square 
of the unrenormalized coupling constant g0 is given by an ex
pression of the form

C = l-A-^, (1)
.7 0

where A is a divergent integral. The ratio (1) is thus equal to 
— oo. This is a very remarkable result, as according to very 
general principles2), this ratio should lie between one and zero. It 
is the aim of the present note to investigate the mathematical 
origin of the result (1) and to show that the violation of general 
principles implied by (1) also has observable consequences 
insofar as the S-matrix of the theory turns out not to be unitary.

1*
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To avoid the manipulation of divergent integrals we introduce a 
cut-oil’ factor in the interaction. It will then appear that abnormal 
values of the ratio (1) are also obtained for a finite value of the 
cut-off and are not immediately connected with the infinities in 
the original formulation. To make our discussion reasonably 
self-contained we start with a survey of the foundations of the 
Lee model and with an outline of the way in which the renor
malizations have to be performed in this case.

I. Renormalization of the Lee Model.

Let us consider a system with three different kinds of par
ticles which, following Lee, we call V-particles, TV-particles, and 
0-particles. To each kind of particles corresponds a field that will 
be denoted by y’y, W> and a, respectively. The system is governed 
by the following unrenormalized Hamiltonian:

H = H0 + Hint, (2)

h0 = X Ev (?)y>v (?) y’v (p) + £ en Cp)vn(p) vn (p)

p - p (3)+ 2? co (?) a*  (?) a (?),
k

Hint = — 7= Y (Vv (?) W (p) a (k) + a*  (?) (p ) xpv (p)). (4)
k V  P 2 co 

p = p’ + k

The operators in (3) and (4) can be thought of as being written 
in p-space and in a Schrôdinger representation. The model does 
not have invariance with respect to the Lorentz group and it will 
not be necessary to use the more sophisticated representations of 
relativistic field theories. The energies E'y(p), EN(p), and co(?) 
are, in principle, arbitrary functions of the momenta involved 
and the theory can be treated for any form of these functions. 
However, for our purpose, it will be sufficient to consider the 
following special case,

(5)Ev(p) ~ en(p) = In (independent of p), 

co (?) = |/?2 + ?2- (6)
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In particular, Eq. (5) will simplify the formal expressions to some 
extent without interfering with the interesting features of the 
result. If one wishes, this choice of the energies as functions of 
the momenta can be thought of as giving a model for the inter
action of very heavy V- and AT-particles (with equal masses) with 
light, relativistic 0-particles. The function /(co) in (4) is the 
cut-off function mentioned earlier and is introduced to make the 
sums, appearing later, convergent. The quantity V is the volume 
of periodicity.

The field operators obey the following commutation and anti
commutation relations :

{v’v(p), W(p')/ = {v4v(p)> V'n(p)} = (7)

{w(?)> w(p)} = {w(p)> V’jv(p)} ... ..............  (8)

[a®. a*®)]  = ôk~k>, (9)

[«(!), V’v(p)] = [«(£)> w(p)J ... .............   0. (10)

With the aid of these commutators wre can set up a representation 
in the Hilbert space, where each state is characterized by the 
number of particles present. Further, each state in this repre
sentation is an eigenstate of the free-particle Hamiltonian Ho in 
(3), but not of the total Hamiltonian (2). Let us denote these 
states by

nV’ nN’ nk^’ (11)

where nv, nN, and nk are the numbers of “free” V-particles, 
A7-particles, and O-particles present3).

With the aid of (7)—(10) it can easily be verified that the 
following two operators commute with the total Hamiltonian.

Qi = 2?w(p)w(p) + JvX/’Wp). (12) 
p p

[H, Qf] =0, i = 1,2.

(13)

(14) 
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As each state (11) is also an eigenstate of the operators Qif it 
follows that the eigenstates of the total Hamiltonian H can be 
built up as linear combinations of states (11) belonging to the 
same eigenvalue qt. This will considerably simplify the problem 
of diagonalizing the total Hamiltonian and, in some cases, even 
give an explicit solution. As an example, we may mention that 
there is only one of the states (11) which has ql = r/2 = 0, viz. 
the state I 0, 0, 0 > or the "free-particle vacuum". Hence, this state 
is also an eigenstate of the total Hamiltonian, and a simple cal
culation gives the eigenvalue zero for this operator. The "physical 
vacuum” is thus the same as the free-particle vacuum for this 
model. In the same way, we can show that the physical A7-par- 
ticle states and the physical O-particle states are identical with 
the corresponding free-particle states, but that the free V-particle 
states are not eigenstates of the total Hamiltonian. II will be 
necessary to consider a linear combination of the states | lv, 0, 0 > 
and J 0,ljy, lfe)> to construct an eigenstate of the total Hamiltonian 
for this case. We shall later return to this point. For the 
moment we only remark that, under these circumstances, it will 
not be necessary to introduce renormalizations of the masses of 
the A7-particIes or the 0-particles. The mass renormalization in 
the model is now performed by adding the following term to the 
Hamiltonian (this term will not change the conservation equa
tions (14)):

ôH = — ôm £y>'v(p)V’v (p). (15)
i>

The constant ôm in (15) should, if possible, be determined in 
such a way that the state corresponding to the physical V-particle 
has the mass m appearing in Ho. Following the custom in quan
tum electrodynamics, we also introduce a renormalization of the 
coupling constant g0 and of the field operator y>v by a factor A7 
in the following way:

<7 = f/o'TV, (16)

W(p) = Vv(P) y- (17)

It is important to realize that the constant A7 in (16) and (17) 
can by definition be chosen to be real, as there is always an 
arbitrary phase factor in the field operators. The choice of a 
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real N only fixes the phase connection between ipv and tpv and 
can have no physical consequences. The value of 2V is determined 
by the condition4*

<0|^'r(p)| V> = 1. (18)

The state | V ) in (18) is the physical V-particle state and the 
state J 0 > the physical vacuum. In what follows, we drop the 
dash on the renormalized ^y-operator as the corresponding 
unrenormalized operator will not be used again. In terms of our 
renormalized quantities the Hamiltonian and the canonical com
mutators will now read

H = H0 + Hint + <3H, (19)

Ho = mN2 ^v'y(j))y)v(p) + m V’n (p) (p) + co (k) (k) a (k), (2(1)
p p

Hint = — ~7= y-7 ^^(wC/OV'xCp )«(^) + «^(^O^xCP^V'rCp)), (21)
y V  y 2 co

p = p' + k

ôH = — ôm N2 (p)vv(p) > (22)
p

(Vv(p), V’v(p)} = ^2Ôp,p' (other commutators unchanged). (23)

Eqs. (19)—(23) will be the foundation for the following discussion.

II. The Physical P-Particle States and the States Describing 
the Scattering of one A7-Particle and one 0-Particle.

We now try to find an eigenstate of the total Hamiltonian of 
the form

\ z y — I 1 y > 0, 0 )> + & (Ä’) J 0, lxy, 1*  />• (24)
7c

In this expression all terms have the same total momentum. In 
the following formulae, a factor expressing conservation of three- 
dimensional momentum is very often left out. Calling the eigen
value of the state (24) in + co0, and using (19)—(23), we obtain 
after some straightforward calculations
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y ø (I) f(co) 

1/2 co
k '

(CO —— CO0) 0 (Â-) 9 fM

(25)

(26)

Eliminating 0 (À’) from (25) and (26) we gel the following equation 
for the determination of the eigenvalue co0:

co0 + ôin +
2 N2 V

\ T<'”> 1.
■  / co co — co0 
k

(27)

The constant ôm is now determined from the condition that 
co0 = 0 should be one solution of (27). The corresponding eigen
state (24) is, when properly normalized, the physical V-particlc 
state. This gives us

(28)

Furthermore, using Eq. (18), we get

The results obtained so far in this paragraph correspond exactly 
to those obtained by Lee. In particular, Eqs. (33) and (16) 
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together give Lee’s result (1) if the’ form factor is put equal 
to unity for all values of co. However, if we have a finite cut-off, 
Eq. (33) can be written

N1 2 = 1----- ,

1 + J?2 Y7 f2WMo
2 V co3 (co — o0)

k

Pcrit
(34)

Pcrit (34 a)

The value (34) of N2 lies between zero and one, as was to be expec
ted, only if the renormalized coupling constant g is less than a 
critical value </crit depending on the cut-off function and defined by 
(34a). If there is no cut-off, the critical value of the coupling is 
zero. Further, if the renormalization of the coupling constant is not 
performed explicitly, but if all quantities arc expressed in terms 
of the original constant g0, we have to substitute the expression

2 2
9o ' 9crit
2 i ~2

9o 4~~ Périt
(35)

for g2 everywhere in our formulae above. Eq. (35) contains the 
definite prediction that the renormalized coupling is always less 
than the critical coupling if the Hamiltonian is hermitian, i.e. if 
g0 is real. As stressed by Lee, it is of some interest to investigate 
also the case of the renormalized coupling being larger than the 
critical value and the Hamiltonian being non-hermitian. The cru
cial question to be answered is whether this violation of the ordinary 
methods of quantum mechanics will have any observable con
sequences or if we are able in this way to get an at least partially 
satisfactory theory.

We now turn to the investigation of the other solutions to the 
eigenvalue problem (27). Making use of (28) and (33) we can 
rewrite Eq. (27) in the following way:

h (coq) — co0
(36)
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The second factor in (36) has a pole each lime co0 = co,, where 
co,- is an eigenvalue of the unperturbed Hamiltonian Ho. As the 
derivative of the last factor in (36) with respect to co0 is always 
positive, this factor must vanish once, and only once, in each 
interval (co,-, co/+1). The corresponding eigenstates (24) describe 
the scattering of one cV-particle and one 0-particle. After some 
formal manipulations these states can be written,

xV, 0> (37)

« (Å-,//) = (38)

7—1
1 (39)

o. I.V. lt> + 2'“(AO.-')|o. l.v, lt-> + «O.V|lr,0.0> 

k'

9 /?(O/'(o/) I „ 1 , . . . , J
----- IP  ---------1- i no (co — co) ’ , 

co — co

+ T - J> -------nH l,--------+ ' («>—«>)
2 I —CO 3 \ O) — CO /

k' \ ! -

In (38) and (39), the limit V—► oc has been anticipated and these 
equations contain a prescription how the denominators must be 
treated when the integration over P is performed. This prescrip
tion corresponds to only outgoing waves in the second term of (37). 
The only incoming particles in these states have momentum I’. 
From the formulae above it is possible to compute that part of 
the S-matrix which corresponds to the scattering of ^-particles 
and 0-particles by each other. The result is the unitary matrix

< .V, o I S I AT/, O') = 0^ (40)

From (40) we get the differential cross section

with

do 1

= |Tpsi,,2d 

tgé = £ lilfw.
4 n h (co)

(41 )

(42)

Again, this corresponds exactly to the results obtained by Lee. 
In the last three formulae, the limit V —> is performed and the
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integral appearing in 7t(<y) {Eq. (36)) is defined to be a principal 
value.

It remains to discuss the important question whether the states 
(32) and (37) obtained so far form a complete set or if there are 
possibly other states of the form (24) which are also eigenstates of 
the total Hamiltonian. If other states exist, they must correspond to 
other solutions of the eigenvalue problem (36). We therefore begin 
by a more detailed discussion of this equation. The argument 
given so far has exhausted all roots of this equation in the domain 
œ0 > p*.  For <w0 < p, we find that the second factor of (36) 
still has a positive derivative and that it approaches the value 
N2 = 1 —g2lglm f°r very large values of | co0|. If the coupling 
constant is less than the critical value, we have no extra root of 
(36) and the states considered so far form a complete set. On 
the other hand, if the coupling is larger than the critical coupling, 
there will be exactly one extra root of (36) for a>0 < p. The cor
responding eigenstate is not a scattering state, but will represent 
another state of the V-particle.t This state can be constructed 
explicitly from the formalism given here, and the result is

* If the cut-off function vanishes exactly for co larger than some value £2, 
the domain co0 > -Q needs a special discussion, as the argument after Eq. (36) will 
not be valid there. Actually, it can be shown that there is an extra root in this 
domain if g is less than the critical value ø . To avoid inessential complications 
of the argument, we therefore consider only cut-off functions that have a long tail 
as, e. g., = e~ o>/^, where this question will not appear.

t In footnote 4 of Lee’s paper, the possibility of another stable state of 
the V-particle is briefly mentioned, but no detailed investigation of its properties 
is given. In our discussion, this state will be of paramount importance.

N‘ ly,0,0> +

h (_ 2) = 0 ; 2 > 0. (44)

The normalization of the state (43) is chosen in a way that will 
be justified in the next paragraph.

It will be shown in Appendix 1 that Eg. (36) has no non-real 
roots.
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III. Introduction of an Indefinite Metric in the Hilbert Space.

The negative sign for A'1 2 in (34), if cj is larger than c/crit, ob
viously leads to difficulties with the normalization of the physical 
V-particle state (32). If we try to correct the normalization of 
this state by multiplying it with a suitable factor, we are ultimately 
led to a modification of our renormalization prescriptions 
insofar as we can no longer use the same factor in (16) and (17) 
to renormalize the coupling constant and the field operator ipv. 
In this case, extra factors have to be inserted in the interaction 
Hamiltonian (21), and it can easily be seen that it is not possible 
in this way to make the theory mathematically consistent. The 
only possibility of saving the normalization of the state (32) is then 
to define the norm of a state a | ny, nN, n/c> to be |«|2(—l)nL 
As N2 in our case is real and negative, this indefinite metric will 
be the appropriate mathematical framework for the Lee model. 
The introduction of this device will not change many of the formal 
operations performed earlier, and particularly the scattering 
states (37) and the S-matrix (40) will be uninfluenced by it. On 
the other hand, the norm of the state (32) will be one as it stands 
in the new metric. The norm of the state (43) will be

1 _ <72 X f2 (co) 
h'(-À)\‘2 ~ co

k

_L__±+_L_
(co -f- A)2 co2 co2 (co T A)

h'(-_X) 
h'(-Å)

1.

The norm of the slate | > is negative and has been nor
malized to — 1 in (43).

To make the formal discussion as simple as possible it will 
now be convenient to introduce a “metric operator” which 
has the following matrix elements for the free-particle slates (11):

< nv, nN, nt|ïj|n'v. n'x. n'k > = 5„,<5„v„;v•(—l)"v. (46)

(45)
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For the physical states considered up till now, we have

<v|??|v>= <N,ö\y\N,0> = 1, (47)

< V_z|7/| V_A> = - 1. (48)

The non-diagonal elements of r] between these states are all zero. 
The condition for an operator F to have real expectation values 
is no longer that it is hermitian, but rather that it is “self-adjoint” 
in the following sense :

F = F+ = T]F*r].  (49)

A detailed examination of the foregoing calculations shows 
that the introduction of the indefinite metric will make the 
mathematics formally consistent if the adjoint operators yhy, 

and a+ are introduced in Eqs. (20)—(23) instead of the 
operators tp'y, and a*.  This will make the Hamiltonian self- 
adjoint. On the other hand, the right-hand side of (23) will no 
longer have a definite sign, and a negative value of this c-number 
will not necessarily be inconsistent with the foundations of the 
theory. A special case of the expectation value of this anticom
mutator is examined in Appendix I.

If the transformation leading from the free particle states 
J n > to the physical states | > is written as a matrix F,

|P> = Z\n><n\u\p>> (50)
|n>

this matrix will not be unitary, but have the property

U+U — 7] U* t] F = 1. (51)

It is then important to decide whether the S-matrix of the 
theory also has the property (51) rather than being unitary. This 
expectation is not in contradiction with the result (40), as the 
operator p has only matrix elements + 1 for the physical states 
involved there. Eq. (51) will have non-trivial consequences only 
if physical states with a non-positive norm are involved. The 
simplest process of this kind is the scattering of a 0-particle by 
a V-particle either in its normal state or in the state In
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the former case, il is to be expected that transitions of the V-par- 
ticle to its new state take place and that these transitions possibly 
occur with “negative probabilities”. The following paragraph is 
devoted to a discussion of these problems.

IV. The Scattering of fl-Particles by V-Particles.

We will now study eigenvectors of the total Hamiltonian of 
the form

:> = Z01O')--V-| ly.O, k') I 0, l.y, 1A., 1A.>. (52)
k k, k'

If the eigenvalue is again called m + co0) a straightforward cal
culation will yield the following equations for the coefficients 
in (52):

øj (/<) (co — co0 — ôm) (53)

ø2 (k, k') (co + co' — co0) (54)

In this case, we arc not interested in the complete set of states 
(52), but will only try to find those special stales corresponding 
to the scattering of a 0-particle by a V-particle in its normal 
state. In other words, we look for solutions to (53) and (54) 
where $i(Ä) is of the form

(k> ^’o) — ^k, k0 + V (^, ^o) (55)

with outgoing waves only in y(k,k0) and in ø2(Å*,Å ’'). The last 
condition gives us

(56)
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1 (57)
co0) .

(58)1

From Eq. (57) we then conclude

y k„)U(k,

k (59)
1

k" (6'0

x P

]/ O)

|/co"

j/co'

Contrary to the situation in paragraph II, it will not be possible 
to tind an explicit solution to Eq. (57). However, this will not 
be necessary for our purpose, as it is sufficient here to investigate 
the properties of the S-matrix. This can be done with a method 
very similar to Moller’s proof of the unitarity of the S-matrix 
if the Hamiltonian is hermitian.6) Following Møller, we intro
duce the following quantity

of (59) and (60) vanishes, as does the correspond- 
Møller’s paper, only if co0 < 2 //. In this case, 
never vanishes in the physical interval (//, x) of 

co", and the transition V+ 0

or, using (28) and (33),

|/co"

The sum 
ing sum in 
co + co"— co0 
the frequencies co, co", and the transition V+ 0 N + O' + 0" 
cannot occur on the energy shell. In the opposite case, co0 >2//, 
this transition causes a slight complication and we get

2 V l/co _> k'

,2



With the aid of (55), (57), (58), and the vanishing of h (0), we have

V (k, ko) h (co0— co) = i U (k, k0).

We write the solution of (62) symbolically as

(Â-, k0) = U (k, k0) 
h (co0 — co) \

(62)

(63)

where the plus sign indicates that outgoing waves are to be chosen 
at the zeros of h(co0— co). Using this result, we can write (61) as

Ô (co0- a>') [U(I0, k{}) + U*  (i;, kQ)]

+ iô(co0 — coq) U*  (k, k0) U (k, k'o) 
k

1
h (co0 —co)+

—y-<5(co0— co0)^<P*(k,  Å'o) ~^>1(k", k0)6(co + co"—co0) — 0.
V k" V coco

The second bracket of (64) can be rewritten in the following way:

1
h (cop — co)+

1
h (<z>0 — co)_ (65)

where the summation is over all the roots of the equation h(x) = 0. 
To simplify the notations further, we introduce the matrices

< V, 0 I Rw I V', O'y = 2 71Ô (co — co) U (k, k' ), (66)

< V_Å, 0 I B(2) I V, 6' > = 2 nd (co + k — co) U(k’k) f 
V~h'(-X)

(67)
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(68)

It can be shown that the sum over all the roots in (65) correspond
ing to the scattering states in paragraph II and the last term of 
(64) can be expressed in terms of the matrix R^\ Using this, 
we can write (64) as

< V, 0 I 7?(1) + Æ(1)* + Æ(1)* Rw I V, 0' > ]

-<V,0|fi<2)*R (2)|V',6'> + < V,0|fl* 3,*R (3)|V'.0'> =0. I
(69)

It now follows that the S-matrix of the Lee model which, for the 
states considered in this paragraph, is given by 

S = 1 + + fi(2)+ R(3\ (70)

is not unitary, because the probability for the transitions V + 0 -+■ 
+ O' is to be counted negative in (69). As was suggested 

earlier, we see instead that the S-matrix has the property

yS * r]S = 1 GO

if the diagonal elements of y belonging to the states | V_%, O') are 
pul equal to —1. It can also be shown that, if transitions from 
the states | V_ jp 0 ) are considered, a similar result will be ob
tained. The non-unitariness of the transformation (50) between 
the free-particle states and the physical states has its close cor
respondence in the non-unitariness of the S-matrix and makes 
the model unacceptable for physical reasons.

At this stage, one might ask if it is not possible to reinterpret 
the formalism with the aid of an argument similar to hole theory 
in quantum electrodynamics. One would then, e. g., call the state 

the vacuum, and the state which is here called the vac
uum a state with one “anti-particle”. However, it is easily seen 
that it is not possible to make the formalism consistent in this 
way as no reinterpretation along such lines will ever change the 
non-unitary properties of the S-matrix in (69).

Dan.Mat. Fys.Medd. 30, no.7. 2
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The conclusion of our discussion is then that the model sug
gested by T.D.Lee is in accordance with the physical probability 
concept only if a cut-off is introduced and if the renormalized 
coupling constant is less than the critical value given by Eq. 
(34 a). In this case, the constant TV2 lies between zero and one, 
as is expected from general arguments.2' If there is no cut-off, 
the critical value of the coupling constant is zero.
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Appendix I.

In this appendix, we show by an explicit calculation how the 
indefinite metric is able to account for the negative sign on the 
right hand of the anticommutator

{vv(p):Vv (/>') } = ^. p' ■ (A.l)

We compute the vacuum expectation value of this quantity for 
7 > 7crit and p = p', and obtain

<0|{v;v(p)5 W(P) )|°> = ^?|<0|w(p)|->|2<^h|^>- (A.2) 
|z>

In (A. 2) the summation is performed over any complete set of 
states. We can, e.g., sum over all physical states and get contri
butions from the physical V-particle state, the state X and 
the scattering states | A, 0 X According to the result of paragraph 
II, these contributions will be

<° |{v4(/X> VV(p)/|o> = 1+Z|K*)| 2
k

= i+^i^«la+yW)-
If there were no indefinite metric, the right-hand side would be 
positive and larger than one. This is also the usual proof2) that 
N2 is a positive number less than one. In our case, the last term 
has a negative sign, and there is no general principle according 
to which the right-hand side of (A. 3) has a definite sign. We 
shall now show explicitly that this quantity has the correct value 
given by Eq. (33). The proof is essentially based on the fact 
that the function h (z) defined by (36) and extended to the com
plex plane by

2*
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f(^)-
(A. 4)

k

has zeros only on the real axis. Indeed, one has with z = x + iy,

(A.5)

(A. 4 a)
z) .

which is unique in the complex

along the path illustrated in Fig. 1 in two different ways. We first 
remark that

which is always different from zero for y A 0.
Moreover, passing to the limit V—> x , h(z) transforms into an 

analytic function given by

= - lim Im
e -> 0

—A'4-2 ni \h (z)
'-c

In,h(^=<l2In,
z 2 V  co3 (co — :

k

h(z) = z\l+Yz(r(m)^=L^<la}

with the abbreviation y — I 
\ 4 %2/
plane cut along the real axis from to positive infinity. The 
imaginary part of h (z) is discontinuous at this part of the real 
axis, having opposite signs in the upper and the lower half plane, 
whilst the real part is continuous. To this ambiguity of h (z) 
corresponds the circumstance that z = /z is a branching point of 
the square root type of h (z) (c/. the explicit form given in Ap
pendix II for the particular case /*(co)  = 1).

These properties of h(z) enable us to evaluate the integral

2 X----- 7

co3 (co — z)

\ c/co
] h (co — i e)

We now divide the path C into two parts. One of them, C±, starts 
from a point z = 7? — ie with arbitrarily large R and arbitrarily
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small, positive e, goes below the real axis at a distance £ from 
it, encircles the point z = /z in the negative direction, returns 
above the real axis at a distance e, and ends at the point 
z — R — is. The second part, CR, is a large circle with radius R 
of which a small part near the positive real axis is omitted.

Performing the limiting process £—> 0, in which the contri
bution of the circular arc of Cj gets arbitrarily small, one first 
obtains

= — 2 z lim Im \ — -------- - = —2 ni \ß (k) 2. (A. 7)
e^o \h{z — ie)

In this limit, the second part CR of C goes over into the full 
circle CR. The corresponding integral is easily evaluated with 
the aid of the asymptotic form of the function h (z) (cf. the remarks 
before Eq. (43)) and gives

(A. 8)
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Hence, in this way we obtain

2 1
(A-9)

On the other hand, the absence of non-real zeros of h (z) and a 
knowledge of the residues of 7i(z)—1 at the poles z = 0 and 
z = — Â permits a direct evaluation of the integral

Hence,

—,Ç-''ÿ= i2 % z ' h (z)
1

V(=-T)- (A. 10)

(A. 11)

Eqs. (A. 11) and (A. 3) together give the expected result (A. 1). If 
the coupling constant is less than the critical value, the integrand 
in (A. 9) will have no pole at z = — A, and the last term in (A. 10) 
will be missing. Other matrix elements of the commutators and 
anticommutators can be treated in similar ways.

Appendix II.

In the particular case of no cut-off /"(co) =1, 1/N = 0 the 
function h(z) (cf. (A.4a)) can be expressed in closed form:

if co > p and £ > 0,

(A. 12)

/i (_ 2) = — Â + y A+^+i'F-yiog if Â p . (A. 13)

Apart from the imaginary part in (A. 12) these two cases can also 
be represented by the same fomula if an absolute value is taken 
for the argument under the logarithm. For the third interval of 
the real axis, one has
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h (co) = co + y if —//< co < /z. (A. 14)

These expressions can be used to find the position of the root

h (— 2) = 0 (A. 15)

both in the weak and in the strong coupling limit. For weak 
coupling, we find from (A. 13) 

(A. 16)

which excludes any kind of power series expansion * In the strong 
coupling limit the application of (A. 14) gives the following ex
pression for the root:

— co = z if y»l (A. 17)
n y

with a possibility of an expansion in powers of y—1.

* This is of some interest in connection with the failure to obtain a power 
series with a finite radius of convergence by application of perturbation methods 
to some examples of renormalizable field theories. Cf. C. A. Hurst, Proc. Cambr. 
Phil. Soc. 48, 625 (1952); W.Thirring, Helv. Phys. Acta 26, 33 (1953); A. Peter- 
mann, Phys. Rev. 89, 1160 (1953), and R. Utiyama and T. lMAMURA,Prog. Theor. 
Phys. 9, 431 (1953).

Indleveret til selskabet den 15. april 1955.
Færdig fra trykkeriet den 17. september 1955.




